Keywords: alkaloids • allenes • natural products • spiro compounds • total synthesis

- Reviews on Gelsemium alkaloids: a) J. E. Saxton in The Alkaloids, Vol. 8 (Ed.: R. H. F. Manske), Academic Press, New York, 1965, pp. 93-117; b) Z.-J. Liu, R.-R. Lu in The Alkaloids, Vol. 33 (Ed.: A. Brossi), Academic Press, New York, 1988, pp. 83-140; c) H. Takayama, S. Sakai in Studies in Natural Products Chemistry, Vol. 15 (Ed.: A. Rahman), Elsevier, Amsterdam, 1995, pp. 465-518.
- [2] N. J. Newcombe, Y. Fang, R. J. Vijn, H. Hiemstra, W. N. Speckamp, J. Chem. Soc. Chem. Commun. 1994, 767 – 768.
- [3] a) J. K. Dutton, R. W. Steel, A. S. Tasker, V. Popsavin, A. P. Johnson, J. Chem. Soc. Chem. Commun. 1994, 765 766; b) D. Kuzmich, S. C. Wu, D.-C. Ha, C.-S. Lee, S. Ramesh, S. Atarashi, J.-K.Choi, D. J. Hart, J. Am. Chem. Soc. 1994, 116, 6943 6944; c) T. Fukuyama, L. Gang, J. Am. Chem. Soc. 1996, 118, 7426 7427; d) S. Atarashi, J.-K. Choi, D.-C. Ha, D. J. Hart, D. Kuzmich, C.-S. Lee, S. Ramesh, S. C. Wu, J. Am. Chem. Soc. 1997, 119, 6226 6241.
- [4] H. Schwarz, L. Marion, Can. J. Chem. 1953, 31, 958-975.
- [5] H. L. Jin, R. S. Xu, Acta Chim. Sinica 1982, 40, 1129-1135.
- [6] E. Wenkert, J. C. Orr, S. Garratt, J. H. Hansen, B. Wickberg, C. L. Leicht, J. Org. Chem. 1962, 27, 4123 4126.
- [7] M. Przybylska, L. Marion, Can. J. Chem. 1961, 39, 2124-2127.
- [8] a) S. W. Baldwin, R. J. Doll, Tetrahedron Lett. 1979, 20, 3275 3278;
 b) N. K. Hamer, J. Chem. Soc. Chem. Commun. 1990, 102 103.
- [9] a) A. S. Kende, M. J. Luzzio, J. S. Mendoza, J. Org. Chem. 1990, 55, 918–924; b) M. J. Luzzio, Dissertation, University of Rochester, USA, 1987. We thank Professor A. S. Kende of the University of Rochester for sending us a copy of this thesis.
- [10] H. Takayama, Y. Tominaga, M. Kitajama, N. Aimi, S. Sakai, J. Org. Chem. 1994, 59, 4381–4385.
- [11] W. G. Beyersbergen van Henegouwen, H. Hiemstra, J. Org. Chem. 1997, 62, 8862 – 8867.
- [12] More detailed information about these reactions will be provided in a full paper.
- [13] a) P. M. M. Nossin, W. N. Speckamp, Tetrahedron Lett. 1981, 22, 3289-3292; b) P. M. M. Nossin, J. A. M. Hamersma, W. N. Speckamp, Tetrahedron Lett. 1982, 23, 3807-3810; c) P. M. M. Nossin, Dissertation, University of Amsterdam, The Netherlands, 1983; for intermolecular reactions of N-acyliminium ions with allenes, see d) R. L. Danheiser, C. A. Kwasigroch, Y.-M. Tsai, J. Am. Chem. Soc. 1985, 107, 7233-7235; e) J. S. Prasad, L. S. Liebeskind, Tetrahedron Lett. 1988, 29, 4257-4260; f) W. F. J. Karstens, F. P. J. T. Rutjes, H. Hiemstra, Tetrahedron Lett. 1997, 38, 6275-6278.
- [14] A. D. Brosius, L. E. Overman, J. Org. Chem. 1997, 62, 440-441.
- [15] S. Cacchi, E. Morera, G. Ortar, Tetrahedron Lett. 1985, 26, 1109 1112.
- [16] a) M. M. Abelman, T. Oh, L. E. Overman, J. Org. Chem. 1987, 52, 4130-4133; b) A. Madin, L. E. Overman, Tetrahedron Lett. 1992, 33, 4859-4862; c) A. Ashimori, B. Bachand, L. E. Overman, D. J. Poon, J. Am. Chem. Soc. 1998, 120, 6477-6487.
- [17] The stereochemistry of the oxindole and ethyl group was proven unambiguously in 24. Distinct NOEs between C10 and C15 protons and C8 and C9 protons were observed.
- [18] H. C. Brown, A. K. Mandal, S. U. Kulkarni, J. Org. Chem. 1977, 42, 1392 – 1398.
- [19] D. A. Evans, S. L. Bender, J. Morris, J. Am. Chem. Soc. 1988, 110, 2506-2526.
- [20] S. Nakatsuka, O. Asano, T. Goto, Heterocycles 1986, 24, 2791 2792. We thank Professor C. Szántay of the Technical University of Budapest (Hungary) for drawing our attention to this article.
- [21] a) S.-I. Murahashi, T. Oda, T. Sugahara, Y. Masui, J. Org. Chem. 1990, 55, 1744–1749; b) M. Kitajima, H. Takayama, S. Sakai, J. Chem. Soc. Perkin Trans. 1 1994, 1573–1578.
- [22] We are very grateful to Professor H. Takayama of Chiba University (Japan) for NMR spectra and a sample of (-)-gelsedine.

Coinage Metal Complexes of a Tellurium Diimide: *cis* → *trans* Isomerization and Metal – Metal Interactions**

Tristram Chivers,* Masood Parvez, and Gabriele Schatte

The unique properties of inorganic polymers, especially those with metal atoms in the backbone, provide an incentive for the investigation of novel systems. The versatile ligand behavior of sulfur(IV) diimides encompasses $\sigma(N)$, $\sigma(N,N')$, and, less commonly, $\sigma(S)$ and $\pi(N,S)$ bonding modes. The only known complex of a selenium(IV) diimide, $SnCl_4(tBuN=Se=NtBu)$, displays $\sigma(N,N')$ chelation. Unlike their lighter congeners RN=E=NR (E=S, Se), which adopt monomeric structures with syn,syn or syn,anti conformations in the solid state single si

 Te_2N_2 ring.^[9] In solution **2b** and **2c** slowly convert into the corresponding *cis* isomers.^[9]

As part of our investigations of the coordination chemistry of tellurium diimide dimers the generation of a polymer in which ligands of type ${\bf 2}$ are bridged by metal ions seemed especially intriguing. We describe here the synthesis and X-ray structures of ${\bf 3}$ and ${\bf 4}$, the first metal complexes of a tellurium diimide dimer. The ligand ${\bf 1}$ exhibits remarkably different ligand behavior towards ${\bf Cu}^+$ and ${\bf Ag}^+$. In particular, ${\bf Cu}^+$ promotes ${\it cis} \to {\it trans}$ isomerization $({\bf 1} \to {\bf 2a})$ in the formation of ${\bf 3}$. In contrast, the dinuclear complex ${\bf 4}$ with a metal-metal $({\bf d}^{10}-{\bf d}^{10})$ interaction is produced in the presence of ${\bf Ag}^+$.

$$\begin{split} &[Cu_2L_3](CF_3SO_3)_2 \qquad \mathbf{3} \\ &[Ag_2L_2](CF_3SO_3)_2 \qquad \mathbf{4} \\ &[Cu_2L](CF_3SO_3)_2 \qquad \mathbf{5} \\ &L = tBuN = Te(\mu - NtBu)_2Te = NtBu \end{split}$$

Complex 3 was obtained by a two-step process in which 5 was prepared from stoichiometric amounts of copper(i) trifluoromethanesulfonate and i. Subsequently, 5 was

^[*] Prof. Dr. T. Chivers, Dr. M. Parvez, Dr. G. Schatte Department of Chemistry University of Calgary Calgary, AB T2N 1N4 (Canada) Fax: (+1)403-289-9488 E-mail: chivers@ucalgary.ca

^[**] We gratefully acknowledge the Natural Sciences and Engineering Research Council (Canada) for financial support.

treated with two equivalents of 1 in toluene to give $3\cdot 2\,C_7H_8$ in excellent yield. An X-ray structure determination of $3\cdot CH_2Cl_2^{[11]}$ revealed a centrosymmetric chain structure in which two Cu^+ ions form linear bridges (N-Cu-N 177.9(8)°) between three dimeric tellurium diimide ligands (Figure 1).

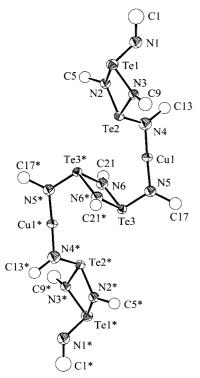


Figure 1. Crystal structure of the cation in **3**. For clarity only the α -carbon atoms of the tBu groups are shown. Selected bond lengths [Å]: Te1–N1 1.87(2), Te1–N2 2.023(18), Te1–N3 2.009(17), Te2–N2 1.997(17), Te2–N3 2.045(18), Te2–N4 1.915(19), Te3–N5 1.868(18), Te3–N6 1.983(19), Te3–N6* 2.025(19), Cu1–N4 1.87(2), Cu1–N5 1.895(19). Symmetry transformation used to generate equivalent atoms (labeled with an asterisk): x+2,-y,-z+2.

Two features of the ligand geometries are noteworthy. First, coordination to Cu^+ engenders $cis \rightarrow trans$ isomerization of the central ligand. Second, the exocyclic tBu groups of the terminal ligands adopt an endo, exo arrangement, presumably as a result of facile rotation about the dipolar Te^+-N^--tBu bonds that involve the uncoordinated nitrogen atoms. [13]

Coordination of the tellurium diimide ligand to Cu^+ likely involves the HOMO -2 orbital, an in-plane σ lone pair on the exocyclic nitrogen atoms, rather than the HOMO, which is a π -type orbital located primarily on the exocyclic nitrogen atoms.^[9] Accordingly, the exocyclic Te-N bond lengths of the coordinated N atoms are not significantly longer than that involving the uncoordinated N atoms. However, the mean bridging Te-N distance of 2.014(18) Å in 3 is somewhat shorter than that of 2.081(8) Å in $\mathbf{1}^{[8]}$ Isomerization imposes planarity on the central Te₂N₂ ring of 2, whereas the terminal Te₂N₂ rings retain the puckered conformation of the free ligands (the N-Te-N-Te torsion angles are -14.4(7) and $14.6(4)^\circ$, respectively; cf. $19.8(5)^\circ$ in $1\mathbf{b}$).^[8] There are no interactions between the cation of 3 and the CF₃SO₃- anions. The Cu-N bond lengths are comparable to those reported for

 $[(tBuN)Re(\mu-NtBu)_2]_2(\mu-NtBu)_2[Cu(O_3SCF_3)]_2$ (1.860(7) and 1.871(7) Å).[14]

The silver(i) complex **4** was obtained in almost quantitative yield from the reaction of equimolar amounts of silver trifluoromethanesulfonate and **1** in toluene. Both the ¹H and ¹³C NMR spectra of **4** in CD₃CN exhibit equally intense signals for bridging and terminal N_tBu groups. The simplicity of these spectra compared to the ¹H NMR spectrum of **3**, which exhibits multiple signals for N_tBu groups, implies a significantly different structure for **4**.

An X-ray structure determination of **4**^[15] showed that the Ag⁺ ions in this complex bridge two tellurium diimide dimers (Figure 2). The two ligands **1** retain their *cis* configurations,



Figure 2. Crystal structure of the cation in **4**. For clarity only the α -carbon atoms of the tBu groups are shown. Mean bond lengths [Å] and angles [°]: Te-N_{exo} 1.898(12), Te-N_{endo} 2.036(12), Ag-N 2.132(12); N-Ag-Ag 94.0(3) – 101.8(3) (av 98.2(3)), Te-N-Ag 122.6 – 125.0(5) (av 123.9(6)).

but the exocyclic tBu groups are both in exo positions to accommodate chelation to the Ag_2^{2+} moiety. The Te_2N_2 rings are rotated by 90° with respect to each other to give a helical structure with no interactions between the dication and the CF₃SO₃⁻ anions. In contrast, the related rhenium ligand (tBuN)₂Re(μ -NtBu)₂Re(NtBu)₂ chelates a single Ag⁺ ion and the CF₃SO₃⁻ anions bridge two Ag⁺ ions in a dimeric structure.[14] The most significant feature of the structure of 4 is the Ag... Ag distance of 2.888(2) Å. The existence of metal-metal bonding in d^{10} - d^{10} systems in which the two metals are closer than the interatomic distances in copper or silver metal is controversial. [16, 17] Ionic complexes of Ag+ with neutral ligands provide the most appropriate comparison **4**, for example, $d(Ag \cdots Ag) = 2.9501(8) \text{ Å}$ in $[Ag_{2}(PPh_{2}CH_{2}SPh)_{2}][ClO_{4}]_{2}^{[17]} \quad and \quad 3.033(1) \; \mathring{A} \quad in \quad [Ag-Ph_{2}CH_{2}SPh]_{2}^{[17]}$ $(\mu-L)(O_3SCF_3)]_2$ (L = 1-[(diphenylphosphanyl)methyl]-4-(2pyridyl)piperazine).[18] Recent ab initio calculations at the MP2/II level on the model system $[Ag_2(H_2PCH_2SH)_2]^{2+}$ indicate the presence of a metallophilic attraction as a correlation effect.^[17] In 4 the geometrical parameters are strongly indicative of a Ag ··· Ag bonding interaction. First, the mean N-Ag-N angle of 163.3(5)° deviates substantially from the linear geometry found for Cu⁺ in 3. Secondly, the N-Te- μ -N bond angles of the complexed ligand (av 99.1(5), range $95.9(5)-102.0(5)^{\circ}$) are significantly smaller than those of the free ligand **1** (av $113.4(5)^{\circ}$).^[8] The mean Ag–N bond length of 2.132(12) Å in **4** is somewhat shorter than those of related Ag⁺ complexes (2.274(7)-2.457(8) Å).^[14, 18]

In summary, the profound differences in the ligand behavior of $\mathbf{1}$ towards different coinage metals heralds a fascinating and unpredictable coordination chemistry for tellurium diimide dimers. The initial complexation of $\mathbf{1}$ to Cu^+ causes $\text{cis} \rightarrow \text{trans}$ isomerization of the ligand. [10] Complex $\mathbf{3}$ can be viewed as a fragment of a metal-bridged polymer with alternating cis and trans ligands $\mathbf{1}$ and $\mathbf{2a}$. The 1:1 complex $\{[\text{CuL}]\text{CF}_3\text{SO}_3\}_n$, the stoichiometric equivalent of $\mathbf{4}$, may have a polymeric structure, but efforts to obtain crystals of this material have so far been unsuccessful.

Experimental Section

- 3: Complex 5 was obtained in 97% yield as a yellow-brown solid from the reaction of equimolar amounts of $Cu_2(CF_3SO_3)_2 \cdot C_6H_6$ and freshly sublimed 1 in toluene (satisfactory CHN analysis). A solution of 1 (0.34 g, 0.62 mmol) in toluene (10 mL) was added dropwise to a stirred slurry of 5 (0.30 g, 0.31 mmol) in toluene (10 mL) at -78°C. After 20 h at 23°C removal of solvent gave $3 \cdot 2 C_7 H_8$ (0.61 g, 0.31 mmol, 88%) as a dark red solid. ¹H NMR (200 MHz, CD₂Cl₂, 23°C): $\delta = 1.32 1.68$ (m).
- **4:** A solution of AgCF₃SO₃ (0.24 g, 0.93 mmol) in toluene (10 mL) was added slowly to a solution of freshly sublimed **1** (0.60 g, 0.93 g) in toluene (10 mL) at $-78\,^{\circ}$ C. After 3 h at 23 $^{\circ}$ C, the solvent was removed to give **4** (0.67 g, 0.42 mmol, 92 %) as an orange solid. Satisfactory CHN analysis; 1 H NMR (200 MHz, CD₃CN, 23 $^{\circ}$ C): δ = 1.44 (s, 9 H, C(CH_3)₃), 1.40 (s, 9 H, C(CH_3)₃); 13 C NMR (400 MHz, CD₃CN, 23 $^{\circ}$ C): δ = 62.46, 59.88 (C(CH₃)₃), 37.01, 36.79 (C(CH_3)₃).

Received: January 27, 1999 [Z12969 IE] German version: *Angew. Chem.* **1999**, *111*, 2355–2357

Keywords: bridging ligands \cdot copper \cdot metal-metal interactions \cdot silver \cdot tellurium

- I. Manners, Angew. Chem. 1996, 108, 1712; Angew. Chem. Int. Ed. Engl. 1996, 35, 1602.
- [2] Review: A. F. Hill, Adv. Organometal. Chem. 1994, 36, 159.
- [3] H. W. Roesky, K. L. Weber, U. Seseke, W. Pinkert, M. Noltemeyer, W. Clegg, G. M. Sheldrick, J. Chem. Soc. Dalton Trans. 1985, 565.
- [4] a) I. Yu. Bagryanskaya, Y. V. Gatilov, M. M. Shakirov, A. V. Zibarev, Mendeleev Commun. 1994, 136; b) I. Yu. Bagryanskaya, Y. V. Gatilov, M. M. Shakirov, A. V. Zibarev, Mendeleev Commun. 1994, 167; c) G. Leandri, V. Busetti, G. Valle, M. Mammi, J. Chem. Soc. Chem. Commun. 1970, 413; d) V. Busetti, Acta Crystallogr. Sect. B 1982, 38, 665; e) J. Leitch, S. C. Nyburg, D. A. Armitage, M. J. Clark, J. Cryst. Mol. Struct. 1973, 3, 337; f) F. P. Olsen, J. C. Barrick, Inorg. Chem. 1973, 12, 1353.
- [5] No solid-state structures of selenium(iv) diimides have been reported, but multinuclear NMR studies indicate a monomeric (syn,anti) structure in solution: B. Wrackmeyer, B. Distler, S. Gerstmann, M. Herberhold, Z. Naturforsch. B 1993, 48, 1307.
- [6] a) J. Kuyper, P. H. Isselmann, F. C. Mijlhoff, A. Spelbos, G. Renes, J. Mol. Struct. 1975, 29, 247; b) D. G. Anderson, H. E. Robertson, D. W. H. Rankin, J. D. Woollins, J. Chem. Soc. Dalton Trans. 1989, 859.
- [7] a) T. Chivers, X. Gao, M. Parvez, J. Chem. Soc. Chem. Commun. 1994,
 2149; b) T. Chivers, X. Gao, M. Parvez, Inorg. Chem. 1996, 35, 9.
- [8] T. Chivers, X. Gao, M. Parvez, J. Am. Chem. Soc. 1995, 117, 2359.
- [9] N. Sandblom, T. Ziegler, T. Chivers, *Inorg. Chem.* **1998**, *37*, 354.
- [10] The moisture-sensitive complex **5** is readily hydrolyzed to give [tBuNTe(\(\mu\)-NtBu)_2TeNtBu][{Cu(tBuNH_2)}_2](O_3SCF_3)_2, in which the tellurium diimide ligand has a *trans* configuration (X-ray crystallography).

- [11] a) Dark red prisms of 3 · CH₂Cl₂ were obtained from a solution in CH₂Cl₂/n-hexane after 24 h by using a reported procedure.^[12] Crystal data for $3 \cdot CH_2Cl_2$: $C_{52}H_{112}N_{12}O_6S_2Te_6Cu_2F_6Cl_4$, $M_r = 2214.14$, monoclinic, space group $P2_1/c$, a = 14.007(4), b = 17.646(4), c = 17.383(4) Å, $\beta = 103.07(2)^{\circ}, \ V = 4185(2) \ \text{Å}^3, \ Z = 2, \ \rho_{\rm calcd} = 1.757 \ \text{g cm}^{-3}, \ \mu(\text{Mo}_{\text{K}\alpha}) = 27.96 \ \text{cm}^{-1}, \ \lambda(\text{Mo}_{\text{K}\alpha}) = 0.71069 \ \text{Å}, \ T = -103 \ \text{°C}, \ F(000) = 2160. \ \text{Data}$ were collected on a Rigaku AFC6S diffractometer on a crystal coated with Paratone 8277 oil and mounted on a glass fiber (crystal dimensions $0.32 \times 0.31 \times 0.31$ mm). Of the 8003 reflections collected, 7331 were unique ($R_{int} = 0.084$). The structure was solved by direct methods (SIR92) and expanded by Fourier techniques. The tBu groups were disordered due to high thermal motions, and the C-N and C-C distances were therefore constrained during the refinements. The final cycle of full-matrix least-squares refinement with F^2 coefficients (SHELXL97) was based on 2043 observed reflections ($I > 2.00 \sigma(I)$) and 265 parameters and led to R = 0.0702 and $R_w = 0.1685$. b) Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC-113882 and -113883. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)1223-336-033; e-mail: deposit@ccdc.cam. ac.uk).
- [12] T. Chivers, M. Parvez, G. Schatte, J. Organomet. Chem. 1998, 550, 213.
- [13] Recent ab initio calculations on iminopnictoranes H₃E⁺-N-H (E=P, As, Sb, Bi) provide estimates of 2-3 kcal mol⁻¹ for the barrier to internal rotation about the E=N bond: J. Koketsu, Y. Ninomiya, Y. Suzuki, N. Koga, *Inorg. Chem.* 1997, 36, 694.
- [14] A. A. Danopouos, G. Wilkinson, T. K. N. Sweet, M. B. Hursthouse, J. Chem. Soc. Dalton Trans. 1996, 2995.
- [15] Crystals of **4** were obtained from a solution in CH₃CN at $-15\,^{\circ}$ C (four weeks).: Crystal data for **4**: $C_{34}H_{72}N_8O_6Ag_2F_6S_2Te_4$, $M_r=1593.24$, monoclinic, space group $P2_1/n$ (no. 14), a=20.342(4), b=11.409(5), c=24.512(5) Å, $\beta=106.26(2)^{\circ}$, V=5461(3) Å³, Z=4, $\rho_{calcd}=1.938$ g cm⁻³, $\mu(Mo_{K\alpha})=29.48$ cm⁻¹, λ ($Mo_{K\alpha})=0.71069$ Å, $T=-103\,^{\circ}$ C, F (000) = 3072. Data were collected on a Rigaku AFC6S diffractometer on a yellow plate (0.35 × 0.40 × 0.13 mm) coated with Paratone 8277 oil and mounted on a glass fiber. Of the 9674 unique reflections collected, 5204 had $I>2.00\,\sigma(I)$. The structure was solved by direct methods (SIR92), completed by Fourier synthesis (DIR-DIF94), and refined on F^2 by full-matrix least-squares procedures: $R=0.0497, R_w=0.1273.^{[11b]}$
- [16] a) K. M. Merz, Jr., R. Hoffmann, Inorg. Chem. 1988, 27, 2120; b) F. A. Cotton, X. Feng, M. Matusz, R. Poli, J. Am. Chem. Soc. 1988, 110, 7077; c) C. Kölmel, R. Ahlrichs, J. Phys. Chem. 1990, 94, 5536.
- [17] E. J. Fernández, J. M. López-de-Luzuriaga, M. Monge, M. A. Rodúguez, O. Gespo, M. C. Gimeno, A. Laguna, P. G. Jones, *Inorg. Chem.* 1998, 37, 6002.
- [18] S.-M. Kuang, Z.-Z. Zhang, Q.-G. Wang, T. C. W. Mak, *Inorg. Chem.* 1998, 37, 6090.